700 {EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO 3, MARCH 1995

On the Eigenfunction Expansion of
Electromagnetic Dyadic Green’s Functions
in Rectangular Cavities and Waveguides

L. W. Li, P. S. Kooi, M. S. Leong, T. S. Yeo, and S. L. Ho

Abstract—The electric dyadic Green’s functions of both the first and
the second kinds due to the presence of electric and equivalent magnetic
sources in rectangular cavities are obtained. A method for directly
reducing the dyadic Green’s functions for a rectangular cavity to those
for a semi-infinite and an infinite rectangular waveguides is presented.
The Green dyads of the second kind for an infinite and a semi-infinite
rectangular waveguides, and a rectangular cavity are obtained.

1. INTRODUCTION

Early in 1960, Collin published the #g-component of the electric
Green dyad of the first kind for a semi-infinite rectangular waveguide
[11. In 1971, Tai [2] introduced the magnetic dyadic Green’s function
of the first kind for an infinite rectangular waveguide in terms of
eigenfunction expansion. Rahmat-Samii [4] in 1975 and Tai [3]
in 1976 discussed in detail the magnetic Green dyads of the first
kind in rectangular cavities and infinite waveguides. Recently. a
more detailed treatment of the three-dimensional Green dyad for
rectangular waveguides and cavities under rectangular coordinates
has been given by Balanis [7], Collin [1] and Tai [2].

So far, the Green dyads of the first kind in rectangular waveguides
and cavities have been well-investigated. However, the Green dyads
of the second kind in a semi-infinite rectangular waveguide have not
been given although the Green dyads of the first kind have been
presented recently by Tai [2]. In practical problems, it is sometimes
necessary to calculate the electromagnetic fields due to both electric
and equivalent magnetic current sources. Consequently, the Green
dyads of the second kind are needed. The y2- and y2-components of
the electric Green dyads of the second kind were presented by Jarem
[6] in 1987 for a semi-infinite waveguide and presented by Liang et
al. [8] in 1992 for a rectangular cavity.

This paper defines the electromagnetic fields in terms of Green
dyads when both the electric and the equivalent magnetic sources
exist in a rectangular semi-infinite or infinite waveguide and cavity.
The electric dyadic Green’s functions of the first and second kinds
for a rectangular waveguide and a rectangular cavity are presented.
Besides, a method for reducing the Green dyads in a rectangular
cavity to those in a semi-infinite and an infinite waveguides is
presented. With this method, 1t becomes very easy and direct to
obtain the Green dyads 1n a rectangular waveguide with multiple loads
when the Green dyad in a rectangular cavity filled with multi-layered
medium has been derived. The magnetic Green dyads of the second
kind derived here is compared with those reported in the literature
and the corresponding correctness of the solutions discussed.

II. FUNDAMENTAL PROBLEM

The electromagnetic radiation fields, £ and H in a rectangular
cavity or waveguide, contributed by the electric current distributions
J and M located in the rectangular cavity or waveguide may be
expressed in terms of the integrals of the electric and magnetic Green
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dyads of the first and second kinds from

T) = —jwit ///éﬁl(m’) STy dv
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where =, ¢ and o stand for the permittivity, permeability and conduc-
tivity of the medium. respectively; V" identifies the volume occupied
by the sources: and the subscripts c1 and e2 denote the electric
Green dyads of the first and second kinds. A time dependence juwt
is assumed for the fields throughout the paper.

Due to the presence of both an electric and an equivalent magnetic
current sources, the boundary conditions on the walls of a conducting
cavity can be written as

(la)

ydv', (1b)

nxE=—-Ky. n
nxXxH=Kj;, N

D= py;
- B = pas;

(2a)
(2b)
where K ;1 and pjas denote the surface current and charge den-
sities due to the electromagnetic sources .J and M with arbitrary
distributions, respectively. For an electrically perfectly conducting
cavity, the boundary conditions of electromagnetic Green dyads in
(2) can be given by:

A x Ger(r.r')=0, n

A XV X Geatr,?) =0

(3a)
(3b)

¥ x Gei(r. 7)) =0,
- éel( ) 0.

For a magnetically perfectly conducting cavity, the boundary
conditions of Green dyads are duals of (3a), (3b), therefore the
corresponding formulae should be duals of what we derived here.

According to the method of scattering superposition, the electric
dyadic Green’s functions of the first and second kinds é"l (r.r')
can be considered as the sum of the unbounded (with respé&t to z-
direction) dyad Gelo (r.r') and the scattering Green dyad Gel Lrrh)
contributed by the 1nterfaces perpendicular to the /.—d1rect10n that is,

G%(r,r') zacgo(r.r')—}-@e%(rr’). 4)

where the unbounded Green dyad, Gelo consisting of singularity and
principal value contributions is glven as follows:

iy y s
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where the rectangular vector wave functions are given in the 1st
edition of Tai's book [2], ¢ (= 1 for m or n = 0, and 0 otherwise)
denotes the Kronecker delta, 12 = &% — &2 = k% — (n7w/a)? —
(mm/b)?, and k 1s designated as k = w /(1 — (jo /we)).

It is noticed that the electric Green dyads of the first and second
kinds have a singularity contributed by the source in the source
region. However, the magnetic Green dyads of the first and second

0018-9480/95$04.00 © 1995 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 3, MARCH 1995 701

z<7 ]

Geometry of the rectangular cavity.

Fig. 1.

kinds do not have because the ysingularity term is cancelled by the
derivatives of the delta function and the unit step function at the
" source point.

III. RECTANGULAR CAVITY

The geometry of the rectangular cavity is shown in Fig. 1. The
scattering dyadic Green’s function represents the contribution due
to the presence of the cavity interfaces perpendicular to z-direction.
Thus, taking the reflected waves into account, we may construct the
scattering Green dyad accordingly as follows:

2 -6
ab ; 77;) 7k§0
AM g (N[0t M s (V) + B M (—7)]
+ Nomn (D]0rn Nomn (1) + Biren Nown (—7)]
+ M (=) [0 M (7) + ﬁ’%ane,mn(—v)]
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(z1< 2,2 < 29) ©)

Ge1

where the coefficients are determined from the boundary conditions
and given below

MN B exp—jv(21+22)
aemn (:F)(+ )2] Sin[’}/(ZQ _ Zl)] 9 (73)
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emn — AT T 7, 7b
o™ 2jsinfy(za — 21)] 7
MN exp—jv(22 —z1)
e = 7
ﬁomn 2] Sin[’)/(ZQ = )] ’ ( C)
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25 sin[y(z2 — 21)]’

and the upper-lower and left-right notatlon of (F)(+—)is demgnated
for the subscript and superscript ($3)(MN).

So far, we derived both the electric Green dyads of the first and
second kinds when an electric and an equivalent magnetic current
distributions are present in a rectangular cavity simultaneously. It is
found that the expressions of the electric Green dyads of the first
kind in (4) after substitution of (5) and (6) for a rectangular cavity
has exactly the same form of the dyadic Green’s function in (33)
presented by Tai [3], while the second kind is presented in the paper
for the first time.

Presently, the gg-component of the electric Green dyads of the first
and second kinds for a rectangular cavity has been given by Liang et

al. In [8], the gg-component of the electric dyadic Green’s function
of the first kind can be found from

2
( et Juwpedy?
It can be seen that the yy-component of the dyadic Green function
given here has exactly the same form as that given by Liang et al. [8]
by letting k = ko, k2, = (mn/b)>—k* and T2, = (nn/a)*+k2, =
—~*. Meanwhile, an agreement is also found between the dyadic
Green’s functions of the second kind obtained in this paper and those
derived partially by Liang et al. [8]. However, it should be pointed
out that the components (9/90z)Gr..» and (9/9z)Gr»» presented by
Liang et al. [8] for the vector potential correspond to the components
-V XGea-3and § -V x Geg - % given here for the EM fields are
not the same. It is very easy to confuse those components G, and

G'p.. presented there with these components Gz, ., and Gg, ..

>GAyy(fc7 v, z2,y, 7).

IV. SIMPLE REDUCTION OF GREEN DYADS IN A CAVITY

A. Semi-Infinite Rectangular Waveguide

Although the electric Green dyads of the first kind for a semi-
infinite rectangular waveguide have been obtained {2], the Green
dyads of the second kind for a semi-infinite rectangular waveguide has
not been presented in the literature, to authors’ knowledge. Applying
the boundary conditions, we can find these dyads. However, an
efficient and simple method can be used to reduce the Green dyads
for a rectangular cavity to those for a semi-infinite and an infinite
rectangular waveguides, respectively.

Applying the Sommefeld radiation condition, we find that the terms

C M,N MN _ .
containing the parameters o, and 8., vanish as zo — co. The
s S
IM,N

smn

coefficient, 5. is given as follows

B, = P+, ®)

while the coefficient, a.'2" | vanishes. In fact, the coefficients in the
case of rectangular semi-infinite waveguide can be reduced easily
from (7a) and (7d) if we let e %2 — 0' as zo — oo. Thus, the
dyadic Green’s function in (6) may be reduced to the following Green
dyad

ab :;0 ,;) Q’Yk%éo

. [/8%%nMgmn(‘7)Mlgmn<_7)

=+ ﬁgynn]vgmn (_PY)N,gmn (_’Y)]
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e2

From (9), we can see that the §-component of the electric Green
dyads of the first kind derived here have the same form as (16) and
(50a)—(51d) given by Collin [1] by letting 21 = —#, and (7) by Jarem
[6] by letting z0 = a/2, yo = b/2 and z1 = —d while the rest are
given for the first time, confirming the applicability of the present
method.

. B. Infinite Rectangular Waveguide

By simply substituting z1 — —oco into (8), we see that the
coefficient of the scattering Green dyad vanishes, i.e.

—éeés('r,'r') =0. (10)

! This relation can be easily proven when the waveguide is filled with the
homogeneous lossy dielectric medium (y = Yre — JYrm). If the medium is
lossless, the Sommerfeld radiation condition must be used.
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The result is expected since it agrees with our initial assumpnon that
the electric Green dyads of the first and second kinds Gelo r.7') are
those for an infinite rectangular waveguide. This partlcular case has
been widely discussed by many researchers, e.g., Tai [2], Collin [1],
Balanis [7], and Rahmat-Samii [4].

V. CONCLUSION

In short, this paper presents the electric dyadic Green’s functions
of the first and second kinds due to both the electric and equivalent
magnetic current sources in rectangular cavities and waveguides.
The dyadic Green’s function of the second kind can be obtained
usually from the Green dyad of the first kind by making the simple
replacements ¥ — H, H — —E, J - M, M — —J, p — =,
and ¢ — p. However, it is found in this paper that for a rectangular
cavity or a rectangular waveguide, additional substitutions, i.e., even
mode (e) — odd mode (o) and odd mode {0) — even mode
(e), should be made in the derivations. The Green dyads of the
second kind for an infinite and a semi-infinite rectangular waveguide
and a rectangular cavity are provided in this paper. Besides, this
paper shows that the dyadic Green's functions for the rectangular
cavity can be simply reduced to those for the semi-infinite and
infinite rectangular waveguides by letting the dimension 20 — cc
and the dimensions 1 — —oo0, 73 — o0, respectively. This is a
very efficient and useful method for obtaining the Green dyads for
rectangular waveguide with multiple loads after the Green dyads for

o

a rectangular cavity filled with a multi-layered medium have been

obtained. It should be emphasized that conversion of the current
expression of dyadic Green’s functions is preferably needed for the
rapid convergence of the series summation [5], [6] while carrying
out the numerical calculations.
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